
CS61B Spring 2024

Comparators and Iterators
Exam-Level 04

CS61B Spring 2024

Announcements

Sunday Monday Tuesday Wednesday Thursday Friday Saturday

2/12
Project 1B Due

Weekly Survey Due

2/15
Midterm 1 (7-9pm)

2/20
Lab 4 Due

Project 1C Due

CS61B Spring 2024

Content Review

CS61B Spring 2024

Comparables are things that can be compared with each other.

Any class could implement this interface.

Defines the notion of being “less than” or “greater than”.

public class Dog implements Comparable<Dog> {
 private String name;
 private int size;
 @Override
 public int compareTo(Dog otherDog) {
 return this.size - otherDog.size;
 }
}

Comparables

CS61B Spring 2024

Comparables

if (d1 < d2) {

} else

}

if (d1.compareTo(d2) < 0) {
// Dog 1 “less than” dog

} else {

}

Can’t use < and > directly on dog objects - undefined for them!

Instead, use the compareTo method instead.

CS61B Spring 2024

Comparators are things that can be used to compare two objects. Think of it as a “seesaw”.

Comparables are the things sitting on the seesaw. Not the seesaw itself!

public interface Comparator<T> {
 int compare(T o1, T o2);
}

public class DogComparator<Dog> implements Comparator<Dog> {
 public int compare(Dog d1, Dog d2) {
 return d1.size - d2.size;
 }
}

Comparators

CS61B Spring 2024

Comparables VS Comparators

finn.compareTo(bmo) bubblegum.compare(finn,bmo)

I’m taller
than u

finn is taller
than bmo

:(

Credit to Austin for this slide

CS61B Spring 2024

The Comparator interface’s compare function takes in two objects of the same type and outputs:

- A negative integer if o1 is “less than” o2
- A positive integer if o1 is “greater than” o2
- Zero if o1 is “equal to” o2

For Comparable, it is the same, except o1 is this, and o2 is the other object passed in.

Think of it as subtracting!

Why does compare/compareTo return an integer?

compare(T o1, T o2) -> o1 - o2
o1 - o2 < 0 -> o1 < o2
o1 - o2 > 0 -> o1 > o2
o1 - o2 = 0 -> o1 = o2

o1.compareTo(o2) -> o1 - o2
o1 - o2 < 0 -> o1 < o2
o1 - o2 > 0 -> o1 > o2
o1 - o2 = 0 -> o1 = o2

CS61B Spring 2024

The Iterator & Iterable Interfaces
Iterators are objects that can be iterated through in Java (in some sort of loop).

public interface Iterator<T> {
boolean hasNext();
T next();

}

Iterables are objects that can produce an iterator.

public interface Iterable<T> {
Iterator<T> iterator();

}

CS61B Spring 2024

The Iterator & Iterable Interfaces
The enhanced for loop

for (String x : lstOfStrings) // Lists, Sets, Arrays are all Iterable!

is shorthand for:

for (Iterator<String> iter = lstOfStrings.iterator(); iter.hasNext();) {
String x = iter.next();

}

CS61B Spring 2024

Iterable

Iterator

Credit to Ergun for this slide

CS61B Spring 2024

I

Credit to Ergun for this slide

CS61B Spring 2024

I

Credit to Ergun for this slide

CS61B Spring 2024

I

Credit to Ergun for this slide

CS61B Spring 2024

Check for Understanding
1. If we were to define a class that implements the interface Iterable<Dog>, what method(s) would this class

need to define?

2. If we were to define a class that implements the interface Iterator<Integer>, what method(s) would this

class need to define?

3. What’s one difference between Iterator and Iterable?

CS61B Spring 2024

Check for Understanding
1. If we were to define a class that implements the interface Iterable<Dog>, what method(s) would this class

need to define?

public Iterator<Dog> iterator()

2. If we were to define a class that implements the interface Iterator<Integer>, what method(s) would this

class need to define?

public boolean hasNext()
public Integer next()

3. What’s one difference between Iterator and Iterable?

Iterators are the actual object we can iterate over, i.e., think a Python generator over a list.

Iterables are object that can produce an iterator, i.e., an array is iterable; an iterator over the array could go

through the element at every index of the array).

CS61B Spring 2024

== vs. .equals()
● == compares if two variables point to the same object in memory.

○ null is compared with ==

● For reference types: .equals() (ex. myDog.equals(yourDog))

○ Each class can provide own implementation by overriding

○ Defaults to Object’s .equals() (which is the same as ==)

○ Example: We make the Dog .equals() method return true if both Dogs have the same name

■ Dog fido = new Dog(“Fido”); Dog otherFido = new Dog(“Fido”);

■ fido == otherFido -> false, but fido.equals(otherFido) -> true

CS61B Spring 2024

Exam Tips

Have a good night of sleep before the exam!

Take a few practice midterms and review lecture slides/discussions as needed. There’s also an test question

bank on the website in the resources section.

Remember our approach to understanding questions in order to solve them.

Flip through the exam as soon as you see it to get a sense of time allocation.

CS61B Spring 2024

Worksheet

CS 61B Comparators, Iterators
Spring 2024 Exam-Level 04: February 12, 2024

1 Take Us to Your ”Yrnqre”
You’re a traveler who just landed on another planet. Luckily, the aliens there use the same alphabet as the

English language, but in a di↵erent order.

Given the AlienAlphabet class below, fill in AlienComparator class so that it compares strings lexicograph-

ically, based on the order passed into the AlienAlphabet constructor. For simplicity, you may assume all

words passed into AlienComparator have letters present in order.

For example, if the alien alphabet has the order �dba...�, which means that d is the first letter, b is the

second letter, etc., then AlienComparator.compare(�dab�, �bad�) should return a negative value, since dab

comes before bad.

If one word is an exact prefix of another, the longer word comes later. For example, �bad� comes before

�badly�. Hint: indexOf might be helpful.

1 public class AlienAlphabet {

2 private String order;

3 public AlienAlphabet(String alphabetOrder) {

4 order = alphabetOrder;

5 }

6 public class AlienComparator implements Comparator<____________> {

7 public int compare(String word1, String word2) {

8

9 int minLength = Math.min(_______________________, _______________________);

10

11 for (___) {

12

13 int char1Rank = __;

14

15 int char2Rank = __;

16

17 if (__) {

18 return -1;

19

20 } else if (__) {

21 return 1;

22 }

23 }

24

25 return _______________________________ - _______________________________;

26 }

27 }

28 }

2 Comparators, Iterators

2 Iterator of Iterators
Implement an IteratorOfIterators which takes in a List of Iterators of Integers as an argument . The

first call to next() should return the first item from the first iterator in the list. The second call should

return the first item from the second iterator in the list. If the list contained n iterators, the n+1th time that

we call next(), we would return the second item of the first iterator in the list.

Note that if an iterator is empty in this process, we continue to the next iterator. Then, once all the

iterators are empty, hasNext should return false. For example, if we had 3 Iterators A, B, and C such

that A contained the values [1, 3, 4, 5], B was empty, and C contained the values [2], calls to next()

for our IteratorOfIterators would return [1, 2, 3, 4, 5].

import java.util.*;

public class IteratorOfIterators ______________________________ {

public IteratorOfIterators(List<Iterator<Integer>> a) {

}

@Override

public boolean hasNext() {

}

@Override

public Integer next() {

}

}

	[aniruth] Exam-Level 04 Slides
	examlevel04pdf

