
CS61B Fall 2023

Lab 9

HashMaps

CS61B Fall 2023

Announcements

Project 2B Checkpoint due Monday, 10/23 at 11:59 pm.

Project 2B is due Monday, 10/30 at 11:59 pm.

CS61B Fall 2023

Throwback: Arrays and Maps

CS61B Fall 2023

Arrays

Question: How fast does it take for an array to lookup an item, given an index?

CS61B Fall 2023

Arrays

Question: How fast does it take for an array to lookup an item, given an index?
● O(1)! (i.e. constant time)

CS61B Fall 2023

Arrays

Question: How fast does it take for an array to lookup an item, given an index?
● O(1)! (i.e. constant time)

It’s pretty fast! We should try to take advantage of this characteristic to create another data

structure.

CS61B Fall 2023

Maps

Let’s talk Maps for a minute. Remember, Maps in Java represent a mapping between a key and value

pairing (<key, value>)

We’re going to try combining mapping with the constant lookup time of arrays!

CS61B Fall 2023

Maps

Let’s talk Maps for a minute. Remember, Maps in Java represent a mapping between a key and value

pairing (<key, value>)

We’re going to try combining mapping with the constant lookup time of arrays!

So, how do we insert these pairings into an array?

CS61B Fall 2023

Hash Functions

CS61B Fall 2023

Hash Functions

What are hash functions?
● They take in a key as their input and returns a hash code!

CS61B Fall 2023

Hash Functions

What are hash functions?
● They take in a key as their input and returns a hash code!

Hash codes are of type int, which means they can take on any value of -2,147,483,648 to
2,147,483,647.

Do we just make… 4,294,967,296 slots in our underlying array for each <key, value> pairing?

CS61B Fall 2023

Modulo

So here’s our solution: %!
● If we use the % operator, we can reduce our hashcode to a value between 0 and N, where N is

the number of buckets we have (or the # of array slots).

● Be careful of negative hash codes when using % (or use Math.floorMod)

CS61B Fall 2023

Possible Problem?

However, if we know that our hash code is technically within a certain range, what happens if two

keys end up with the same hash code?

This brings us into our next topic: hash collisions!

CS61B Fall 2023

Hash Collisions

CS61B Fall 2023

Hash Collisions

If two keys end up with the same hash code, this is called a hash collision (and they will end up

mapping to the same bucket). To deal with them, at least for this lab, we’ll use external chaining.

CS61B Fall 2023

Hash Collisions

If two keys end up with the same hash code, this is called a hash collision (and they will end up

mapping to the same bucket). To deal with them, at least for this lab, we’ll use external chaining.

External Chaining: Store all keys with the same hash code in a collection of their own, such as a

linked list (i.e. each bucket will have a collection, and if a key maps to that bucket, we store it in the

corresponding collection).

CS61B Fall 2023

Duplicates

What about duplicate keys? Assuming we’re using the same hash function, the key will be mapped
to the same bucket (deterministic), so how do we check if a key is already in the hashmap?

CS61B Fall 2023

Duplicates

What about duplicate keys? Assuming we’re using the same hash function, the key will be mapped
to the same bucket (deterministic), so how do we check if a key is already in the hashmap?
● Consider using the equals method to check if a key is already in the hashmap, specifically, in

the bucket.

● Remember, we can’t have any duplicate keys in hashmaps, so we need to ensure that it doesn’t

happen.

CS61B Fall 2023

Collisions

What happens if we have too many collisions?

● Think about what happens if every element gets put in the first bucket. What happens to the

runtime of adding or finding an element?

CS61B Fall 2023

Collisions

What happens if we have too many collisions?

● Think about what happens if every element gets put in the first bucket. What happens to the

runtime of adding or finding an element?

The less collisions (aka less elements in a single bucket), the better runtime for all HashMap
operations!

CS61B Fall 2023

Back to Hash Functions

So if minimizing collisions is our goal, how does that relate to the hash function that we use, and how

do we pick a good hash function?

CS61B Fall 2023

Back to Hash Functions

So if minimizing collisions is our goal, how does that relate to the hash function that we use, and how

do we pick a good hash function?

● A good hash function is one that minimizes collisions!

● This means it maps all inputs uniformly over the output range, i.e. it should put approximately

the same number of elements in each bucket.

CS61B Fall 2023

Resizing

CS61B Fall 2023

Resizing

What happens if we have too many elements in our HashMap, i.e. too many elements in all
buckets, total?
● We can try to reduce the number of items per bucket by expanding how many buckets we

have total!

● To avoid long lookup times per bucket, we will resize our bucket array.

CS61B Fall 2023

Resizing

At some point, when there are too many items in the hashmap, we want to resize our hashmap.

Specifically, when our load factor surpasses a certain limit.

CS61B Fall 2023

Resizing

At some point, when there are too many items in the hashmap, we want to resize our hashmap.

Specifically, when our load factor surpasses a certain limit.

Number of Items

Number of Buckets
Load Factor =

CS61B Fall 2023

Rehashing

We resize our HashMap by increasing the number of buckets and rehashing all the elements?

● If we don’t rehash, we might mistakenly “lose” an element!

● Consider a HashMap with 4 buckets and an element that hashes to 7. What would happen if

we didn’t rehash when we resize to 8 buckets?

Thus, with a good resizing mechanism and a good hash function, all Hashmap operations run in

amortized O(1) runtime!

CS61B Fall 2023

HashMaps

CS61B Fall 2023

HashMaps

Bringing this all together, we have our data structure: hashmaps!

CS61B Fall 2023

HashMaps

Bringing this all together, we have our data structure: hashmaps!

● We have an array-like structure where each bucket has some <key, value> pairings stored in

it.

● Each of the pairings are put based on their hash code or the output of the hash function.

● Each bucket ultimately stores a linked list, so we can save multiple entries into a single bucket

(external chaining)

CS61B Fall 2023

Let’s walk through an example! For now, our hashmap starts out with 2 buckets and the load

factor limit is set to 0.75. Our hash function will return a randomized integer. Note: We are only
concerned with mapping here, so the value is omitted.

CS61B Fall 2023

hashFunction() →
returns a random
integer

Object 1

Let’s pass our first object into the hash function, Object1, and it returns an integer of 27. Which

bucket does it go into?

CS61B Fall 2023

hashFunction() →
returns a random
integer

Object 2Object 1

Using the modulus operator, it goes into the bucket corresponding to index of 1. How about for

Object2, assuming it’s hash code is 22444?

CS61B Fall 2023

hashFunction() →
returns a random
integer

Object 1

Object 2

Reminder: our limit for this
hash map is a load factor of
0.75 (we check for when it
exceeds the load factor)

It’ll go into the bucket corresponding to index of 0! What do we have to do now?

CS61B Fall 2023

hashFunction() →
returns a random
integer

Object 1

Object 2

Our current load factor is 1.
Our limit is 0.75.

We need to increase the number of buckets in our hashmap! This means that we have to rehash

all the objects that are currently in the hashmap.

CS61B Fall 2023

Hash Codes:
● Object 1: 27
● Object 2: 22444

Object 1

Object 2

Our current load factor is 1.
Our limit is 0.75.

Assuming that our resize factor is 2, what will our hashmap look like? The hash codes of the

current objects are provided above.

CS61B Fall 2023

New Hash Code:
● Object 1: 27 % 4 = 3
● Object 2: 22444 % 4 = 0

Object 1

Object 2

It’ll look something like this! We rehashed all our objects based on their original hash codes and

the new number of buckets in our hashmap.

CS61B Fall 2023

Additional Notes

Keep in mind that the key of our <key, value> pairing is what is passed into the hash function.

In addition, make sure that you maintain the association of your key with your value (i.e. that the

entirety of the <key, value> pairing is placed into the correct bucket).

If a duplicate key is placed into the hashmap, then the old value is replaced with the new value.

CS61B Fall 2023

Lab Overview

CS61B Fall 2023

An Overview

Lab 09 is due Friday, 10/27 at 11:59 pm.

Deliverables:
● Complete your implementation of HashMap and ensure that it implements the interface

Map61B.

● Make sure to fill out results.txt!

Some tips:

● Take advantage of the provided helper methods and make some of your own!

● Make sure to read the spec carefully for requirements.

For help, use the Lab queue: [INSERT YOUR LAB QUEUE HERE]

