
CS61B Fall 2023

Lab 06

Disjoint Sets

CS61B Fall 2023

Announcements

Homework 2 is released and will be due Wednesday, 10/4 at 11:59 pm.

CS61B Fall 2023

Disjoint Sets

CS61B Fall 2023

Disjoint Sets

A disjoint set is a type of data structure that represents a collection of sets.

Some definitions:
● Set: a collection of items where there are no duplicates (each item is unique) and order is not

maintained.

● Disjoint: Any item in the data structure can not be found in more than one set, i.e. an item can

only ever exist in one of the sets at a time.

CS61B Fall 2023

This is what a disjoint set might look like → it is a collection of sets. The sets in this representation
consist of {0, 1, 2}, {3, 4}, and {5}. Notice that no specific item exists in more than one set.

CS61B Fall 2023

Disjoint Sets

The main operations of disjoint sets consist of:
● find: determines which set an item belongs to
● union: merges two sets into one

As a byproduct, the disjoint set data structure is also referred to as Union-Find.

CS61B Fall 2023

Quick Find

CS61B Fall 2023

Quick Find

Given the two main operations, let’s say we prioritize making the find operation faster. To do so,
we can use an array to represent our disjoint sets.

CS61B Fall 2023

Quick Find

This is the array representation of the disjoint set that we saw earlier with the sets: {0, 1, 2}, {3, 4}
and {5}. We treat the indices of the array as the items in the set and the element at each index
corresponds to which set the item belongs to.

CS61B Fall 2023

Quick Find

This is the array representation of the disjoint set that we saw earlier with the sets: {0, 1, 2}, {3, 4}
and {5}. We treat the indices of the array as the items in the set and the element at each index
corresponds to which set the item belongs to.

Notice that we take the smallest item to represent its entire set (i.e. 0 represents the set of {0, 1,
2} and 3 represents the set of {3, 4}, etc.). Which item we choose to represent the set is arbitrary
and dependent on implementation.

CS61B Fall 2023

Here is the visual representation seen earlier and its array representation. With this, we can
achieve constant time for find, but end up with linear time for union!

CS61B Fall 2023

Quick Union

CS61B Fall 2023

Quick Union

With quick union, in our representation, we can think of our disjoint sets data structure as a
collection of trees. Specifically, each set can be thought of as a tree and would have the following
qualities:

CS61B Fall 2023

Quick Union

With quick union, in our representation, we can think of our disjoint sets data structure as a
collection of trees. Specifically, each set can be thought of as a tree and would have the following
qualities:
● The nodes represent items in our set

● Each node only needs a reference to its parent, instead of a direct reference to the face of the

set

● The root of each tree will be the face of the set it represents

CS61B Fall 2023

Quick Union Modifications

So, to make our union operation faster, we’ll need to make a couple of changes.
● Our array structure is still the same (each index corresponds to an item)

CS61B Fall 2023

Quick Union Modifications

So, to make our union operation faster, we’ll need to make a couple of changes.
● Our array structure is still the same (each index corresponds to an item)

However, instead of storing the item representing the face of a set, we store the parent
references of a specific item.
● If an item has no parent, we will refer to this as the root of its set.

Unfortunately, depending on how we connect the disjoint sets, the worst case runtime for union

will still be linear. How can we optimize this?

CS61B Fall 2023

Weighted Quick Union

CS61B Fall 2023

Union

While our union operation does become faster in some cases, it’s worst case is still O(N). find is
also still O(N). For example, if we end up with the following disjoint sets structure, we’ll get the
worst case runtime:

CS61B Fall 2023

Union

While our union operation does become faster in some cases, it’s worst case is still O(N). find is
also still O(N). For example, if we end up with the following disjoint sets structure, we’ll get the
worst case runtime:

CS61B Fall 2023

Weighted Quick Union

How can we remedy this problem?

CS61B Fall 2023

Weighted Quick Union

How can we remedy this problem?

We can solve this by unioning based on size/weight. This is done to keep trees as shallow as
possible and to avoid the possibility of spindly trees, like before, from forming.
● By convention, when we union, we connect the smaller tree (less nodes) as a subtree of the

larger one.
● In the case of ties, we can break it arbitrarily (some convention dictates to make the

smaller-valued root the root of the combined sets, but ultimately implementation dependent)

● In our array, we also track the size of a set at the index corresponding to the root as -size.

CS61B Fall 2023

Refer to lab for an example for unioning by weight, but at this point, this is what a possible array
representation would look like for our disjoint sets.

CS61B Fall 2023

Path Compression

CS61B Fall 2023

Path Compression

How can we optimize our Union-Find data structure even more?

Consider the following Disjoint Set instance:

0

CS61B Fall 2023

Path Compression

If you repeatedly call find on the deepest
leaf in this tree, i.e. find(5), you would
have to traverse through each parent from
the leaf to the root every time with our
current implementation.

How can we optimize our Union-Find data structure even more?

Consider the following Disjoint Set instance:

0

CS61B Fall 2023

Path Compression

We can implement path compression to find an item and all the nodes on the path to the root in
constant time, after the first call to find!

Path compression involves setting the parent of an item to be the root of its tree after we find the
root. This also applies to every node on the path from the item to the root!

CS61B Fall 2023

Path Compression

Consider the following Disjoint Set instance before Path Compression:

Tree Representation Array Representation

0

1 -6 1 2 3 4

 0 1 2 3 4 5

CS61B Fall 2023

Path Compression

Consider the following Disjoint Set instance before Path Compression:

Tree Representation Array Representation

0

1 -6 1 2 3 4

 0 1 2 3 4 5

Let’s call find(5)-> 1
Nodes in path to root: 5, 4, 3, 2, 1

CS61B Fall 2023

Path Compression

Consider the following Disjoint Set instance before Path Compression:

Tree Representation Array Representation

0

1 -6 1 2 3 4

 0 1 2 3 4 5

Let’s call find(5)-> 1
Nodes in path to root: 5, 4, 3, 2, 1
Path Compression: update parent of all
nodes in path to become the root !

CS61B Fall 2023

Path Compression

Consider the following Disjoint Set instance after Path Compression:

Tree Representation Array Representation

0

1 -6 1 1 1 1

 0 1 2 3 4 5

1

2

3

4

5

Let’s call find(5)-> 1
Nodes in path to root: 5, 4, 3, 2, 1
Path Compression: update parent of all
nodes in path to become the root !

CS61B Fall 2023

Lab Overview

CS61B Fall 2023

An Overview

Lab 6 is due Friday, 9/29 at 11:59 pm.
● As a reminder, to get the lab assignment, run git pull skeleton main in your personal

repository.

Deliverables:
● Complete UnionFind.java by implementing the Disjoint Sets data structure

For help, use the Lab queue: [INSERT]

