Graphs, Heaps, Midterm 2 Review

Exam Prep 09

- Week 8 Survey due 11:59 PM Monday 10/16
- Homework 3 due Monday 10/16 (non-extendable!)
- Midterm 2 is Thursday, 10/19 7-9 pm
- Project 2B Checkpoint due Monday 10/23

Content Review

Trees, Revisited (and Formally Defined)

Trees are structures that follow a few basic rules:

1. If there are N nodes, there are $\mathrm{N}-1$ edges
2. There is exactly 1 path from root to every other node
3. The above two rules means that trees are fully connected and contain no cycles

A parent node points towards its child.
The root of a tree is a node with no parent nodes.
A leaf of a tree is a node with no child nodes.

Graphs

Trees are a specific kind of graph, which is more generally defined as below:

1. Graphs allow cycles
2. Simple graphs don't allow parallel edges (2 or more edges connecting the same two nodes) or self edges (an edge from a vertex to itself)
3. Graphs may be directed or undirected (arrows vs. no arrows on edges)

Check! How would you describe each of these graphs (in terms of directedness and cycles)?

Graph Representations

Adjacency lists list out all the nodes connected to each node in our graph:

A	B, C
B	E
C	F
D	B
E	
F	D

Graph Representations

Adjacency matrices are true if there is a line going from node A to B and false otherwise.

	A	B	C	D	E	F
A	0	1	1	0	0	0
B	0	0	0	0	1	0
C	0	0	0	0	0	1
D	0	1	0	0	0	0
E	0	0	0	0	0	0
F	0	0	0	1	0	0

Breadth First Search

Breadth first search means visiting nodes based off of their distance to the source, or starting point. For trees, this means visiting the nodes of a tree level by level. Breadth first search is one way of traversing a graph.

BFS is usually done using a queue.


```
BFS(G):
    Add G.root to queue
    While queue not empty:
    Pop node from front of queue and visit
    for each immediate neighbor of node:
        Add neighbor to queue if not
        already visited
```


Depth First Search

Depth First Search means we visit each subtree (subgraph) in some order recursively. DFS is usually done using a stack. Note that for graphs more generally, it doesn't really make sense to do in-order traversals.

Pre-order traversals visit the parent node before visiting child nodes.*

In-order traversals visit the left child, then the parent, then the right child.

Post-order traversals visit the child nodes before visiting the parent nodes.*

[^0]
General Graph DFS Pseudocode (Stack)

"Visit my left child, then myself, then my right child"*

* can be done with a stack, but usually easier with recursive

Preorder: "Visit the node as soon as it enters the stack: myself, then all my children"

Postorder: "Visit the node as soon as it leaves the stack: all my children, then myself"

* in-order for binary trees:
DFSInorder (T):

DFSInorder (T.left)
visit T.root
DFSInorder(T.right)

* in-order for binary trees:

DFSInorder (T):

```
DFS(start):
    stack = {start}, visited = {}
    while stack not empty:
        n = top node in stack
        visited.add(n), preorder.add(n)
        if n has unvisited neighbors:
        push n's next unvisited
        neighbor onto stack
            else:
            pop n off top of stack
            postorder.add(n)
    return preorder, postorder
DFS(start):
```


General Graph DFS Pseudocode (Recursive)

* in-order for binary trees:

DFSInorder (T):
DFSInorder(T.left)
visit T.root
DFSInorder(T.right)

```
DFS(start):
```

DFS(start):
preorder.add(start)
preorder.add(start)
visited.add(start)
visited.add(start)
for each neighbor of start:
for each neighbor of start:
if neighbor not visited:
if neighbor not visited:
DFS(neighbor)
DFS(neighbor)
postorder.add(start)
postorder.add(start)
return preorder, postorder

```
        return preorder, postorder
```

[^1]
Heaps

Heaps are special trees that follow a few invariants:

1. Heaps are complete - the only empty parts of a heap are in the bottom row, to the right
2. In a min-heap, each node must be smaller than all of its child nodes. The opposite is true for max-heaps.

Check! What makes a binary min-heap different from a binary search tree?

Heap Representation

We can represent binary heaps as arrays with the following setup:

1. The root is stored at index 1 (not 0 - see points 2 and 3 for why)
2. The left child of a binary heap node at index i is stored at index $2 i$
3. The right child of a binary heap node at index i is stored at index $2 i+1$

$[-, 0,5,1,7,8,2]$

Check! What kind of graph traversal does the ordering of the elements in the array look like starting from the root at index 1 ?

Insertion into (Min-)Heaps

We insert elements into the next available spot in the heap and bubble up as necessary: if a node is smaller than its parent, they will swap. (Check: what changes if this is a max heap?)

Root Deletion from (Min-)Heaps

We swap the last element with the root and bubble down as necessary: if a node is greater than its children, it will swap with the lesser of its children. (Check: what changes if this is a max heap?)

Heap Asymptotics (Worst case)

Operation	Runtime
insert	$\Theta(\operatorname{logN})$
findMin	$\Theta(1)$
removeMin	$\Theta(\operatorname{logN})$

Worksheet

CS 61B

Fall 2023

Graphs, Heaps

Exam-Level 9: October 16, 2023

1 Graph Conceptual

(a) Answer the following questions as either True or False and provide a brief explanation:

1. If a graph with n vertices has $n-1$ edges, it must be a tree.
No,
0
n-1 edges connecting n-1 vertices
2. Every edge is looked at exactly twice in every iteration of DFS on a connected, undirected graph.
Yes - get there and bach
3. In BFS, let $d(v)$ be the minimum number of edges between a vertex v and the start vertex. For any two vertices u, v in the fringe, $|d(u)-d(v)|$ is always less than 2.
```
Yes, can't have distance of 2
formal pwof is by contradiction;, intrition is OFS goes round by rand
```

(b) Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and false otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm.

```
DFS but moditied
```

If we see a vertex again in exploration, there are multiple ways to get there
Since this is undirected, that weans there is a cycle
One caveat: track parent; since it's undirected, can't have parent \leftrightarrow child interpreted as a cycle

2 Fill in the Blanks

Fill in the following blanks related to min-heaps. Let N is the number of elements in the min-heap. For the entirety of this question, assume the elements in the min-heap are distinct.

1. removeMin has a best case runtime of $\quad \theta(1)$ and a worst case runtime of $\theta(\log \omega)$

\checkmark No swap

\qquad
$\theta(1)$ and a worst case runtime of \qquad $\theta(\log \omega)$
2. insert has a best case runtime of \qquad traversal on a min-heap may output the elements in
. A pro order or level order sorted order. Assume there are at least 3 elements in the min-heap. Can't do in-order, post order
4. The fourth smallest element in a min-heap with 1000 elements can appear in \qquad places in the heap. (Feel free to draw the heap in the space below.) \leftarrow Note: cannot be at top

5. Given a min-heap with $2^{N}-1$ distinct elements, for an element

- to be on the second level it must be less than $\mathbf{2}^{N-1}-2$ \qquad elements) and greater than
\qquad 1 \qquad element (s).- the not

- to be on the bottommost level it must be less than \qquad elements) and greater than \qquad elements). - bigger than the path upwards

Hint: A complete binary tree (with a full last-level) has $2^{N}-1$ elements, with N being the number of levels. (Feel free to draw the heap in the space below.)

3 Heap Mystery optional

This question is challenging! It is not expected that the TA would go over this problem, since they may spend time to do midterm Q A. Feel free to refer to the solutions and the linked video.

We are given the following array representing a min-heap where each letter represents a unique number. Assume the root of the min-heap is at index zero, i.e. A is the root. Note that there is no significance of the alphabetical ordering, i.e. just because B precedes C in the alphabet, we do not know if B is less than or greater than C.

Array: $[\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \mathrm{G}]$
Four unknown operations are then executed on the min-heap. An operation is either a removeMin or an insert. The resulting state of the min-heap is shown below.

Array: $[\mathrm{A}, \mathrm{E}, \mathrm{B}, \mathrm{D}, \mathrm{X}, \mathrm{F}, \mathrm{G}]$ most have an insert (x) and a remove Min() to delete C
(a) Determine the operations executed and their appropriate order. The first operation has already been filled in for you!

1. removeMin() - must have an insert (A)
2. insert (x) - So x gees foo right $+\frac{\text { left }}{}$

3. remove $\mathrm{Min}_{\mathrm{in}}$)
4. insert (A)

(b) Fill in the following comparisons with either $>,<$, or ? if unknown. We recommend considering which elements were compared to reach the final array.
5. $\mathrm{X} \xrightarrow{?} \mathrm{D}$ only know $E \subset X, E<D$, not x in relation to D
6. $\mathrm{X}>\mathrm{C}$ to have X move to root after remove M in
7. $\mathrm{B}>\mathrm{C}$ keeps C at root to get deleted and B on second level
8. G $\subset X$ to have X move to root after remove Min

1a Graph Conceptuals (T/F)

1. If a graph with n vertices has $n-1$ edges, it must be a tree.
2. Every edge is looked at exactly twice in every iteration of DFS on a connected, undirected graph.
3. In $B F S$, let $d(v)$ be the minimum number of edges between a vertex v and the start vertex. For any two vertices u, v in the fringe, $|d(u)-d(v)|$ is always less than 2 .

1a Graph Conceptuals (T/F)

1. If a graph with n vertices has $n-1$ edges, it must be a tree.

1a Graph Conceptuals (T/F)

1. If a graph with n vertices has $n-1$ edges, it must be a tree.

False. Could be disconnected.

1a Graph Conceptuals (T/F)

2. Every edge is looked at exactly twice in every iteration of DFS on a connected, undirected graph.

1a Graph Conceptuals (T/F)

2. Every edge is looked at exactly twice in every iteration of DFS on a connected, undirected graph.

True. The two vertices the edge is connecting will look at that edge when it's their turn.

1a Graph Conceptuals (T/F)

3. In BFS, let $d(v)$ be the minimum number of edges between a vertex v and the start vertex. For any two vertices u, v in the fringe, $|d(u)-d(v)|$ is always less than 2.

1a Graph Conceptuals (T/F)

3. In BFS, let $d(v)$ be the minimum number of edges between a vertex v and the start vertex. For any two vertices u, v in the fringe, $|d(u)-d(v)|$ is always less than 2.

True.

$$
[2,2,3,3,4]
$$

1a Graph Conceptuals (T/F)

3. In BFS, let $d(v)$ be the minimum number of edges between a vertex v and the start vertex. For any two vertices u, v in the fringe, $|d(u)-d(v)|$ is always less than 2.

True.

added after dequeuing dist-3 node

1b Graph Conceptuals

Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and false otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm.

1b Graph Conceptuals

Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and false otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm. You may use either an adjacency list or an adjacency matrix to represent your graph. (We are looking for an answer in plain English, not code).

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a cycle.

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a cycle.

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a cycle.

dfs(a)

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a cycle.

$$
\left.\mathrm{dfs}_{\mathrm{s}} \mathrm{a}\right) \rightarrow \mathrm{dfs}(\mathrm{~b})
$$

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a cycle.

$$
\begin{aligned}
& \mathrm{dfs}(\mathrm{a}) \rightarrow \mathrm{dfs}(\mathrm{~b}) \\
& \rightarrow \mathrm{dfs}(\mathrm{c})
\end{aligned}
$$

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is a cycle.

$$
\begin{gathered}
\mathrm{dfs}^{(\mathrm{a})} \rightarrow \mathrm{dfs}(\mathrm{~b}) \rightarrow \\
\mathrm{dfs}(\mathrm{c}) \rightarrow \mathrm{dfs}(\mathrm{a}) \\
\text { repeat }=\text { cycle }
\end{gathered}
$$

2 Fill in the Blanks

1. removeMin has a best case runtime of \qquad and a worst case runtime of \qquad .

2 Fill in the Blanks

1. removeMin has a best case runtime of $\Theta(1)$ and a worst case runtime of $\Theta(\operatorname{logN})$.

Best case: only one swap down is required, thus finishing in constant time Worst case: sink down from top to the bottom. Height $=\Theta(\operatorname{logN})$

2 Fill in the Blanks

2. insert has a best case runtime of \qquad and a worst case runtime of \qquad .

2 Fill in the Blanks

2. insert has a best case runtime of $\Theta(1)$ and a worst case runtime of $\Theta(\log N)$.

Best case: no bubbling up required
Worst case: bubble up from bottom to top. Height $=\Theta$ (logN)

2 Fill in the Blanks

3. A \qquad or \qquad traversal on a min-heap may output the elements in sorted order. Assume there are at least 3 elements in the min-heap.

2 Fill in the Blanks

3. A pre-order or level-order traversal on a min-heap may output the elements in sorted order. Assume there are at least 3 elements in the min-heap.

Any traversal must output the top node first. Only pre-order and level-order obey this constraint.

2 Fill in the Blanks

4. The fourth smallest element in a min-heap with 1000 elements can appear in places in the heap.

2 Fill in the Blanks

4. The fourth smallest element in a min-heap with 1000 elements can appear in 14 places in the heap.
second, third, or fourth level

2 Fill in the Blanks

5. Given a min-heap with $2^{n}-1$ elements, for an element to be on the second level it must be less than ___ element(s) and greater than ___ element(s).

2 Fill in the Blanks

5. Given a min-heap with $2^{n}-1$ elements, for an element to be on the second level it must be less than $2^{(\mathbb{N}-1)}-2$ element(s) and greater than 1 element(s).
must be greater than the topmost and less than the elements in its subtree
half the heap, minus the top node and the node itself

2 Fill in the Blanks

5. Given a min-heap with $2^{n}-1$ elements, for an element to be on the bottommost level it must be less than \qquad element(s) and greater than \qquad element(s).

2 Fill in the Blanks

5. Given a min-heap with $2^{n}-1$ elements, for an element to be on the bottommost level it must be less than 0 element(s) and greater than $\mathrm{N}-1$ element(s).
larger than all direct ancestors

3a Heap Mystery (Optional)

Initial State
$[-, A, B, C, D, E, F, G]$

3a Heap Mystery

3a Heap Mystery

insert (A) must be after all removeMin() - otherwise would remove A again

Sequence of calls:

1. removeMin()
2. removeMin() / insert(X)
3. removeMin() / insert(X)
4. insert (A)

Differences in state:

- C was removed: removeMin()
- X was added: insert(X)
- A was removed by first call to removeMin () and added back: insert (A)

3a Heap Mystery

insert (X) must be before removeMin, since it bubbles up then down

Sequence of calls:

1. removeMin()
2. insert (X)
3. removeMin()
4. insert (A)

Differences in state:

- C was removed: removeMin()
- X was added: insert(X)
- A was removed by first call to removeMin() and added back: insert(A)

3b Heap Mystery

Initial State
[-, A, B, C, D, E, F, G]

Final State:
[-, A, E, B, D, X, F, G]

3b Heap Mystery

Initial State
$[-, A, B, C, D, E, F, G]$
Final State:
[-, A, E, B, D, X, F, G]
X is never compared to D

1. X ? 2. $^{X}>\mathrm{D}$
2. B
3. G

Final State:
[-, A, E, B, D, X, F, G]
3. $B>C$

Initial State
[-, A, B, C, D, E, F, G]

Final State:
[-, A, E, B, D, X, F, G]
$B>C$ otherwise the second call to removeMin would have removed B

3b Heap Mystery

1. X ? D

Initial State
$[-, A, B, C, D, E, F, G]$

Final State:
[-, A, E, B, D, X, F, G]

[^0]: * in binary trees, we visit the left child before right child

[^1]: "Visit my left child, then myself, then my right child"*

 * can be done with a stack, but usually easier with recursive

