
CS61B FA23

Graphs, Heaps, Midterm 2
Review
Exam Prep 09

CS 61B Fall 2023

Announcements

● Week 8 Survey due 11:59 PM
Monday 10/16

● Homework 3 due Monday 10/16
(non-extendable!)

● Midterm 2 is Thursday, 10/19 7-9
pm

● Project 2B Checkpoint due
Monday 10/23

CS 61B Fall 2023

Content Review

CS 61B Fall 2023

Trees, Revisited (and Formally Defined)
Trees are structures that follow a few basic rules:
1. If there are N nodes, there are N-1 edges
2. There is exactly 1 path from root to every other node
3. The above two rules means that trees are fully connected and contain no cycles

A parent node points towards its child.

The root of a tree is a node with no parent nodes.

A leaf of a tree is a node with no child nodes.

CS 61B Fall 2023

Graphs
Trees are a specific kind of graph, which is more generally defined as below:
1. Graphs allow cycles
2. Simple graphs don’t allow parallel edges (2 or more edges connecting the same two nodes) or self

edges (an edge from a vertex to itself)
3. Graphs may be directed or undirected (arrows vs. no arrows on edges)

Check! How would you describe each of these graphs (in terms of directedness and cycles)?

CS 61B Fall 2023

Graph Representations
Adjacency lists list out all the nodes connected to each node in our graph:

A

B

C

D

E

F

A B , C

B E

C F

D B

E

F D

CS 61B Fall 2023

Graph Representations
Adjacency matrices are true if there is a line going from node A to B and false otherwise.

A

B

C

D

E

F

A B C D E F

A 0 1 1 0 0 0

B 0 0 0 0 1 0

C 0 0 0 0 0 1

D 0 1 0 0 0 0

E 0 0 0 0 0 0

F 0 0 0 1 0 0

CS 61B Fall 2023

Breadth First Search
Breadth first search means visiting nodes based off of their distance to the source, or starting point. For
trees, this means visiting the nodes of a tree level by level. Breadth first search is one way of traversing a
graph.

BFS is usually done using a queue.

A

B C

D E

BFS(G):
Add G.root to queue
While queue not empty:

Pop node from front of queue and visit
for each immediate neighbor of node:

Add neighbor to queue if not
already visited

CS 61B Fall 2023

Depth First Search

Post-order traversals visit the
child nodes before visiting the
parent nodes.*

Depth First Search means we visit each subtree (subgraph) in some order recursively. DFS is usually done
using a stack. Note that for graphs more generally, it doesn’t really make sense to do in-order traversals.

In-order traversals visit the left
child, then the parent, then
the right child.

Pre-order traversals visit the
parent node before visiting
child nodes.*

A

B E

C D

D

B E

A C

E

C D

A B

* in binary trees, we visit the left child before right child

CS 61B Fall 2023

General Graph DFS Pseudocode (Stack)

A

B

C

D

E

F

DFS(start):
stack = {start}, visited = {}
while stack not empty:

n = top node in stack
visited.add(n), preorder.add(n)
if n has unvisited neighbors:

push n’s next unvisited
neighbor onto stack

else:
pop n off top of stack
postorder.add(n)

return preorder, postorder

Preorder: “Visit the node as soon
as it enters the stack: myself,
then all my children”

Postorder: “Visit the node as
soon as it leaves the stack: all my
children, then myself”

* in-order for binary trees:
DFSInorder(T):

DFSInorder(T.left)
visit T.root
DFSInorder(T.right)

“Visit my left child, then myself, then my right child”*
* can be done with a stack, but usually easier with recursive

CS 61B Fall 2023

General Graph DFS Pseudocode (Recursive)

A

B

C

D

E

F

DFS(start):
preorder.add(start)
visited.add(start)
for each neighbor of start:

if neighbor not visited:
DFS(neighbor)

postorder.add(start)
return preorder, postorder

* in-order for binary trees:
DFSInorder(T):

DFSInorder(T.left)
visit T.root
DFSInorder(T.right)

“Visit my left child, then myself, then my right child”*
* can be done with a stack, but usually easier with recursive

CS 61B Fall 2023

Heaps
Heaps are special trees that follow a few invariants:
1. Heaps are complete - the only empty parts of a heap are in the bottom row, to the right
2. In a min-heap, each node must be smaller than all of its child nodes. The opposite is true for

max-heaps.

0

5 1

7 8 2

Check! What makes a binary min-heap different from a binary search tree?

CS 61B Fall 2023

Heap Representation
We can represent binary heaps as arrays with the following setup:
1. The root is stored at index 1 (not 0 - see points 2 and 3 for why)
2. The left child of a binary heap node at index i is stored at index 2i
3. The right child of a binary heap node at index i is stored at index 2i + 1

0

5 1

7 8 2

[-, 0, 5, 1, 7, 8, 2]

Check! What kind of graph traversal does the
ordering of the elements in the array look like
starting from the root at index 1?

CS 61B Fall 2023

Insertion into (Min-)Heaps

0

5 1

7 8 2 -1

0

5 -1

7 8 2 1

-1

5 0

7 8 2 1

We insert elements into the next available spot in the heap and bubble up as necessary: if a node is
smaller than its parent, they will swap. (Check: what changes if this is a max heap?)

CS 61B Fall 2023

Root Deletion from (Min-)Heaps

0

5 1

7 8 2 4

4

5 1

7 8 2

1

5 4

7 8 2

1

5 2

7 8 4

We swap the last element with the root and bubble down as necessary: if a node is greater than its
children, it will swap with the lesser of its children. (Check: what changes if this is a max heap?)

CS 61B Fall 2023

Heap Asymptotics (Worst case)

Operation Runtime

insert Θ(logN)

findMin Θ(1)

removeMin Θ(logN)

CS 61B Fall 2023

Worksheet

CS 61B Graphs, Heaps
Fall 2023 Exam-Level 9: October 16, 2023

1 Graph Conceptuals
(a) Answer the following questions as either True or False and provide a brief explanation:

1. If a graph with n vertices has n− 1 edges, it must be a tree.

2. Every edge is looked at exactly twice in every iteration of DFS on a connected, undirected graph.

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the start vertex. For

any two vertices u, v in the fringe, |d(u)− d(v)| is always less than 2.

(b) Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph, and

false otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm.

Mobile User

2 Graphs, Heaps

2 Fill in the Blanks
Fill in the following blanks related to min-heaps. Let N is the number of elements in the min-heap. For the

entirety of this question, assume the elements in the min-heap are distinct.

1. removeMin has a best case runtime of and a worst case runtime of .

2. insert has a best case runtime of and a worst case runtime of .

3. A or traversal on a min-heap may output the elements in

sorted order. Assume there are at least 3 elements in the min-heap.

4. The fourth smallest element in a min-heap with 1000 elements can appear in places

in the heap. (Feel free to draw the heap in the space below.)

5. Given a min-heap with 2N − 1 distinct elements, for an element

� to be on the second level it must be less than element(s) and greater than

element(s).

� to be on the bottommost level it must be less than element(s) and greater

than element(s).

Hint: A complete binary tree (with a full last-level) has 2N − 1 elements, with N being the number

of levels. (Feel free to draw the heap in the space below.)

Mobile User

Graphs, Heaps 3

3 Heap Mystery Optional

This question is challenging! It is not expected that the TA would go over this problem, since they may spend

time to do midterm Q A. Feel free to refer to the solutions and the linked video.

We are given the following array representing a min-heap where each letter represents a unique number.

Assume the root of the min-heap is at index zero, i.e. A is the root. Note that there is no significance of the

alphabetical ordering, i.e. just because B precedes C in the alphabet, we do not know if B is less than or

greater than C.

Array: [A, B, C, D, E, F, G]

Four unknown operations are then executed on the min-heap. An operation is either a removeMin or an

insert. The resulting state of the min-heap is shown below.

Array: [A, E, B, D, X, F, G]

(a) Determine the operations executed and their appropriate order. The first operation has already been

filled in for you!

1. removeMin()

2.

3.

4.

(b) Fill in the following comparisons with either >, <, or ? if unknown. We recommend considering which

elements were compared to reach the final array.

1. X D

2. X C

3. B C

4. G X

Mobile User

CS61B FA23

1a Graph Conceptuals (T/F)
1. If a graph with n vertices has n − 1 edges, it must be a tree.
2. Every edge is looked at exactly twice in every iteration of DFS on a connected, undirected graph.
3. In BFS, let d(v) be the minimum number of edges between a vertex v and the start vertex. For any

two vertices u, v in the fringe, |d(u) − d(v)| is always less than 2.

CS61B FA23

1a Graph Conceptuals (T/F)

1. If a graph with n vertices has n − 1 edges, it must be a tree.

CS61B FA23

1a Graph Conceptuals (T/F)

1. If a graph with n vertices has n − 1 edges, it must be a tree.

False. Could be disconnected.

CS61B FA23

1a Graph Conceptuals (T/F)

2. Every edge is looked at exactly twice in every iteration of DFS on a connected,
undirected graph.

CS61B FA23

1a Graph Conceptuals (T/F)

2. Every edge is looked at exactly twice in every iteration of DFS on a connected,
undirected graph.

True. The two vertices the edge is connecting will look at that edge when it’s
their turn.

u v

CS61B FA23

1a Graph Conceptuals (T/F)

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the
start vertex. For any two vertices u, v in the fringe, |d(u) − d(v)| is always less than
2.

CS61B FA23

1a Graph Conceptuals (T/F)

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the
start vertex. For any two vertices u, v in the fringe, |d(u) − d(v)| is always less than
2.

True.

[2, 2, 3, 3, 4]

added after dequeuing dist-3 node

CS61B FA23

1a Graph Conceptuals (T/F)

3. In BFS, let d(v) be the minimum number of edges between a vertex v and the
start vertex. For any two vertices u, v in the fringe, |d(u) − d(v)| is always less than
2.

True.

[2, 2, 3, 3, 4]

added after dequeuing dist-3 node
but can’t deque dist-3 until all dist-2
nodes done!

CS61B FA23

1b Graph Conceptuals

Given an undirected graph, provide an algorithm that returns true if a cycle exists in the
graph, and false otherwise. Also, provide a Θ bound for the worst case runtime of your
algorithm.

CS61B FA23

1b Graph Conceptuals

Given an undirected graph, provide an algorithm that returns true if a cycle exists in the graph,
and false otherwise. Also, provide a Θ bound for the worst case runtime of your algorithm. You
may use either an adjacency list or an adjacency matrix to represent your graph. (We are looking
for an answer in plain English, not code).

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is
a cycle.

CS61B FA23

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is
a cycle.

a b

c

CS61B FA23

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is
a cycle.

a b

c

dfs(a)

CS61B FA23

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is
a cycle.

a b

c

dfs(a) → dfs(b)

CS61B FA23

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is
a cycle.

a b

c

dfs(a) → dfs(b)
→ dfs(c)

CS61B FA23

1b Graph Conceptuals

Basic Idea: Keep track of visited nodes, do a DFS and if we visit any already visited nodes there is
a cycle.

a b

c

dfs(a) → dfs(b) →
dfs(c) → dfs(a)

repeat = cycle

CS61B FA23

2 Fill in the Blanks

1. removeMin has a best case runtime of _____ and a worst case runtime of ______.

CS61B FA23

2 Fill in the Blanks

1. removeMin has a best case runtime of Θ(1) and a worst case runtime of Θ(logN).

Best case: only one swap down is required, thus finishing in constant time
Worst case: sink down from top to the bottom. Height = Θ(logN)

CS61B FA23

2 Fill in the Blanks

2. insert has a best case runtime of ______ and a worst case runtime of ______.

CS61B FA23

2 Fill in the Blanks

2. insert has a best case runtime of Θ(1) and a worst case runtime of Θ(logN).

Best case: no bubbling up required
Worst case: bubble up from bottom to top. Height = Θ(logN)

CS61B FA23

2 Fill in the Blanks

3. A __________ or __________ traversal on a min-heap may output the elements
in sorted order. Assume there are at least 3 elements in the min-heap.

CS61B FA23

2 Fill in the Blanks

3. A pre-order or level-order traversal on a min-heap may output the elements in
sorted order. Assume there are at least 3 elements in the min-heap.

Any traversal must output the top node first. Only pre-order and level-order obey
this constraint.

A

B C

A

B C

CS61B FA23

2 Fill in the Blanks

4. The fourth smallest element in a min-heap with 1000 elements can appear in
_____ places in the heap.

CS61B FA23

2 Fill in the Blanks

4. The fourth smallest element in a min-heap with 1000 elements can appear in
14 places in the heap.

second, third, or fourth level

…

min

Larger than 3 ancestors

CS61B FA23

2 Fill in the Blanks

5. Given a min-heap with 2n - 1 elements, for an element to be on the second
level it must be less than ______ element(s) and greater than ___ element(s).

CS61B FA23

2 Fill in the Blanks

5. Given a min-heap with 2n - 1 elements, for an element to be on the second
level it must be less than 2(N−1) − 2 element(s) and greater than 1 element(s).

must be greater than the topmost and less than the elements in its subtree

half the heap, minus the top
node and the node itself

CS61B FA23

2 Fill in the Blanks

5. Given a min-heap with 2n - 1 elements, for an element to be on the
bottommost level it must be less than _____ element(s) and greater than ______
element(s).

CS61B FA23

2 Fill in the Blanks

5. Given a min-heap with 2n - 1 elements, for an element to be on the
bottommost level it must be less than 0 element(s) and greater than N - 1
element(s).

larger than all direct ancestors

…

CS61B FA23

3a Heap Mystery (Optional)

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

CS61B FA23

3a Heap Mystery

A

B

D E

C

F G

A

E

D X

B

F G

Differences in state:
- C was removed: removeMin()
- X was added: insert(X)
- A was removed by first call to

removeMin() and added back:
insert(A)

Sequence of calls:
1. removeMin()
2. ___________
3. ___________
4. ___________

CS61B FA23

3a Heap Mystery

A

B

D E

C

F G

A

E

D X

B

F G

Differences in state:
- C was removed: removeMin()
- X was added: insert(X)
- A was removed by first call to

removeMin() and added back:
insert(A)

Sequence of calls:
1. removeMin()
2. removeMin() / insert(X)
3. removeMin() / insert(X)
4. insert(A)

insert(A)must be after all removeMin()
– otherwise would remove A again

CS61B FA23

3a Heap Mystery

A

B

D E

C

F G

A

E

D X

B

F G

Differences in state:
- C was removed: removeMin()
- X was added: insert(X)
- A was removed by first call to

removeMin() and added back:
insert(A)

Sequence of calls:
1. removeMin()
2. insert(X)
3. removeMin()
4. insert(A)

insert(X)must be before removeMin,
since it bubbles up then down

CS61B FA23

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

1. X ____ D
2. X ____ C
3. B ____ C
4. G ____ X

CS61B FA23

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

1. X ? D
2. X ____ C
3. B ____ C
4. G ____ X

X is never compared to D

CS61B FA23

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

1. X ? D
2. X > C
3. B ____ C
4. G ____ X

X must be greater than C, since removeMin
removes C instead of X

CS61B FA23

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

1. X ? D
2. X > C
3. B > C
4. G ____ X

B > C otherwise the second call to removeMin would have removed B

CS61B FA23

3b Heap Mystery

A

B

D E

C

F G

Initial State
[-, A, B, C, D, E, F, G]

A

E

D X

B

F G

Final State:
[-, A, E, B, D, X, F, G]

1. X ? D
2. X > C
3. B > C
4. G < X

X > G since it bubbles up then down

insert(X)

	Exam Level 09 Slides
	examlevel09
	Exam Level 09 Slides
	Exam Level 09 Slides

