ADTs, Asymptotics II, BSTs

Exam Level 07

- Weekly Survey 6 due Monday 10/2
- HW2 due Wednesday 10/4

Announcements

- Lab 7 due Friday 10/6
- Project 2A due Wednesday 10/11
- Seriously start Proj2 :')

Content Review

Asymptotics Advice

- Asymptotic analysis is only valid on very large inputs, and comparisons between runtimes is only useful when comparing inputs of different orders of magnitude.
- Use Θ where you can, but won't always have tight bound (usually default to O)
- Reminder: total work done = sum of all work per iteration or recursive call
- While common themes are helpful, rules like "nested for loops are always $\mathrm{N}^{2 "}$ can easily lead you astray (pay close attention to stopping conditions and how variables update)
- Drop lower-order terms (ie. $\mathrm{n}^{3}+10000 \mathrm{n}^{2}-5000000->\Theta\left(\mathrm{n}^{3}\right)$)

Asymptotics Advice

- For recursive problems, it's helpful to draw out the tree/structure of method calls
- Things to consider in your drawing and calculations of total work:
- Height of tree: how many levels will it take for you to reach the base case?
- Branching factor: how many times does the function call itself in the body of the function?
- Work per node: how much actual work is done per function call?
- Life hack pattern matching when calculating total work where $f(N)$ is some function of N
- $1+2+3+4+5+\ldots+f(N)=[f(N)]^{2}$
- $1+2+4+8+16+\ldots+f(N)=f(N)$
- Rule applies with any geometric factor between terms, like $1+3+9+\ldots+f(\mathrm{~N})$

Asymptotics Advice

- Doing problems graphically can be helpful if you're a visual learner (plot variable values and calculate area formula):

```
for (int i = 0; i < N; i++) {
    for (int j = 0; j < i; j++) {
        /* Something constant */
    }
}
```


Binary Search Trees

Binary Search Trees are data structures that allow us to quickly access elements in sorted order. They have several important properties:

1. Each node in a BST is a root of a smaller BST
2. Every node to the left of a root has a value "lesser than" that of the root
3. Every node to the right of a root has a value "greater than" that of the root

BSTs can be bushy or spindly:

If Thanpos snapped his fingers at a binary tree, would it end up

like this
like this?
or

BST Insertion

Items in a BST are always inserted as leaves.

```
insert(2)
```


BST Deletion

Items in a BST are always deleted via a method called Hibbard Deletion. There are several cases to consider:

```
delete(2)
```


In this case, the node has no children so deletion is an easy process.

BST Deletion

Items in a BST are always deleted via a method called Hibbard Deletion. There are several cases to consider:

```
delete(1)
```


In this case, the node has one child, so it simply replaces the deleted node, and then we act as if the child was deleted in a recursive pattern until we hit a leaf.

BST Deletion

Items in a BST are always deleted via a method called Hibbard Deletion. There are several cases to consider:

```
delete(5)
```


In this case, the node has two children, so we pick either the leftmost node on in the right subtree or the rightmost node in the left subtree.

Worksheet

1 Finish the Runtimes

For each part, a desired runtime is given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math. pow helpful.

```
for (int i = 1; i <
```

\qquad

``` ; i =
``` \(\qquad\)
``` ) \{
    for (int j = 1; j < ______; j = _______) {
        System.out.println("Circle is the best TA");
    }
}
```


1 Finish the Runtimes

For each part, a desired runtime is given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math. pow helpful.

```
for (int i = 1; i <
```

\qquad

``` ; i =
``` \(\qquad\)
``` ) \{
    for (int j = 1; j < ______; j = _______) {
        System.out.println("Circle is the best TA");
    }
}
```


1 Finish the Runtimes

For each part, a desired runtime is given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math. pow helpful.

Desired runtime: $\Theta\left(\mathrm{N}^{2}\right)$

```
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < i; j = ______) {
        System.out.println("This is one is low key hard");
    }
}
```


1 Finish the Runtimes

For each part, a desired runtime is given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math. pow helpful.

Desired runtime: $\Theta\left(\mathrm{N}^{2}\right)$

```
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < i; j = j + 1) {
        System.out.println("This is one is low key hard");
    }
}
\[
1+2+3+\ldots+N=\Theta\left(N^{2}\right)
\]
```


1 Finish the Runtimes

For each part, a desired runtime is given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math. pow helpful.

Desired runtime: $\Theta(\log N)$

```
for (int i = 1; i < N; i = i * 2) {
    for (int j = 1; j < ______; j = j * 2) {
        System.out.println("This is one is mid key hard");
    }
```

\}

1 Finish the Runtimes

For each part, a desired runtime is given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math. pow helpful.

Desired runtime: $\Theta(\log N)$

```
for (int i = 1; i < N; i = i * 2) {
    for (int j = 1; j < 2; j = j * 2) {
        System.out.println("This is one is mid key hard");
    }
}
```

$$
i=1,2,4, \ldots N \rightarrow \log N \text { iterations }
$$

1 Finish the Runtimes

For each part, a desired runtime is given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math. pow helpful.

Desired runtime: $\Theta\left(2^{N}\right)$

```
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < ______; j = j + 1) {
        System.out.println("This is one is high key hard");
    }
```

\}

1 Finish the Runtimes

For each part, a desired runtime is given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math. pow helpful.

Desired runtime: $\Theta\left(2^{N}\right)$

```
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < Math.pow(2, i); j = j + 1) {
        System.out.println("This is one is high key hard");
    }
}
```

$$
1+2+4+\ldots 2^{N}=\Theta\left(2^{N}\right)
$$

1 Finish the Runtimes

For each part, a desired runtime is given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math. pow helpful.

Desired runtime: $\Theta\left(\mathrm{N}^{3}\right)$

```
for (int i = 1; i < ______; i = i * 2) {
    for (int j = 1; j < N * N; j = ______) {
        System.out.println("yikes");
    }
}
```


1 Finish the Runtimes

For each part, a desired runtime is given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.

Hint: You may find Math. pow helpful.

Desired runtime: $\Theta\left(\mathrm{N}^{3}\right)$

```
for (int i = 1; i < Math.pow(2, N); i = i * 2) {
    for (int j = 1; j < N * N; j = j + 1) {
        System.out.println("yikes");
    }
}
```

$$
\begin{gathered}
\text { Outer loop: } \mathrm{i}= \\
\\
\text { Inner loop: } \mathrm{N}^{2}
\end{gathered}
$$

2A Asymptotics is Fun!

```
void g(int N, int x) {
    if (N == 0) {
        return;
    }
    for (int i = 1; i <= x; i++) {
        g(N - 1, i);
    }
}
\[
\begin{aligned}
& g(N, 1): \Theta() \\
& g(N, 2): \Theta()
\end{aligned}
\]
```


2A Asymptotics is Fun!

```
void g(int N, int x) {
    if (N == 0) {
        return;
    }
\[
\text { for (int } i=1 ; i<=x ; i++)\{
\]
    for (int i = 1; i <= x; i++) {
\[
\begin{aligned}
& g(N, 1): \Theta(N) \\
& g(N, 2): \Theta\left(N^{2}\right)
\end{aligned}
\]
\[
g(N-1, i) ;
\]
        g(N - 1, i);
\[
\}
\]
    }
\[
\}
\]
}
```


2B Asymptotics is Fun!

```
void g(int N, int x) {
    if (N == 0) {
        return;
    }
    for (int i = 1; i <= f(x); i++) { g(N,N): \Omega( ), O( )
        g(N - 1, x);
    }
}
```


2B Asymptotics is Fun!

```
void g(int N, int x) {
    if (N == 0) {
        return;
    }
    for (int i = 1; i <= f(x); i++) { g(N,N): \Omega(N), O(NN)
        g(N - 1, x);
    }
}
```


3A Is This a BST?

The following code should check if a given binary tree is a BST. However, for some trees, it returns the wrong answer. Give an example of a binary tree for which brokenIsBST fails.

```
public static boolean brokenIsBST(BST tree) {
    if (tree == null) {
        return true;
    } else if (tree.left != null &&& tree.left.key > tree.key) {
        return false;
    else if (tree.right != null && tree.right.key < tree.key) {
        return false;
    } else {
            return brokenIsBST(tree.left) &&&
    brokenIsBST(tree.right);
    }
}
```


3A Is This a BST?

The following code should check if a given binary tree is a BST. However, for some trees, it returns the wrong answer. Give an example of a binary tree for which brokenIsBST fails.

```
public static boolean brokenIsBST(BST tree) {
    if (tree == null) {
        return true;
    } else if (tree.left != null && tree.left.key > tree.key) {
        return false;
    else if (tree.right != null && tree.right.key < tree.key) {
        return false;
    } else {
            return brokenIsBST(tree.left) &&
    brokenIsBST(tree.right);
    }
}
```


3B Is This a BST?

Now, write isBST that fixes the error encountered in part (a).

```
public static boolean isBST(BST T) {
```

\}
public static boolean isBSTHelper(BST T, int min, int max) \{

3B Is This a BST?

```
public static boolean isBST(BST T) {
    return isBSTHelper(T, Integer.MIN_VALUE, Integer.MAX_VALUE);
}
public static boolean isBSTHelper(BST T, int min, int max) {
    if (T == null) {
        return true;
    } else if (T.key < min || T.key > max) {
        return false;
    } else {
        return isBSTHelper(T.left, min, T.key)
        && isBSTHelper(T.right, T.key, max);
    }
}
```


CS 61B

Fall 2023

Asymptotics, Disjoint Sets

Exam-Level 7: September 25, 2023

1 Finish the Runtimes

Below we see the standard nested for loop, but with missing pieces!

```
for (int i = 1; i < ______; i = ______) {
    for (int j = 1; j < ; ; \(j=\)
``` \(\qquad\)
``` ) \{ System.out.println("Circle is the best TA");
    }
}
```

For each part below, some of the blanks will be filled in, and a desired runtime will be given. Fill in the remaining blanks to achieve the desired runtime! There may be more than one correct answer.
Hint: You may find Math. pow helpful.
(a) Desired runtime: $\Theta\left(N^{2}\right)$

```
for (int i = 1; i < N; i = i + 1) {
    for (int j = 1; j < i; j = j+L__) {
        System.out.println("This is one is low key hard");
    }
}
```

(b) Desired runtime: $\Theta(\log (N))$ this is \log already, pich a constant
for (int $i=1 ; i<N ; i=i * 2)\{$
for (int $j=1 ; j<\ldots _$; $j=j * 2$) \{
System.out.println("This is one is mid key hard");
\}
\}
(c) Desired runtime: $\Theta\left(2^{N}\right)$ Math. pow (2,i)

```
for (int i = 1; i < N; i = ij+ 1) {
    for (int j = 1; j < _2'__; j = j + 1) {
        System.out.println("This is one is high key hard");
    }
}
```

(d) Desired runtime: $\Theta\left(N^{3}\right)$

\}
\}

Independent from outer loop

2 Asymptotics is Fun!

(a) Using the function g defined below, what is the runtime of the following function calls? Write each answer in terms of N. Feel free to draw out the recursion tree if it helps.

```
void g(int N, int x) {
    if (N == 0) {
        return;
    }
    for (int i = 1; i <= x; i++) {
        g(N - 1, i);
    }
}
g(N, 1): \Theta(N )
    I iteration of inner loop
```


$g(N, 2): \Theta\left(N^{2}\right)$
2 iterations of inner loop

(b) Suppose we change line 6 to $g(N-1, x)$ and change the stopping condition in the for loop to $i<=f(x)$ where f returns a random number between 1 and x, inclusive. For the following function calls, find the tightest Ω and big O bounds. Feel free to draw out the recursion tree if it helps.

```
void \(g(\) int \(N\), int \(x)\) \{
    if ( \(\mathrm{N}==0\) ) \{
        return;
    \}
    for (int \(i=1 ; i<=f(x) ; i++)\{\)
        \(\mathrm{g}(\mathrm{N}-1, \mathrm{x})\);
    \}
\}
```



```
                            \(f(x)\) determines \(\begin{array}{lll}\Omega & \text { and } & 0 \\ \downarrow & \downarrow \\ & 1 & x\end{array}\)
    \(N\) times
```


3 Is This a BST?

In this setup, assume a BST (Binary Search Tree) has a key (the value of the tree root represented as an int) and pointers to two other child BSTs, left and right.

```
(a) The following code should check if a given binary tree is a BST. However, for some trees, it returns the
wrong answer. Give an example of a binary tree for which brokenIsBST fails.
public static boolean brokenIsBST(BST tree) {
    if (tree == null) {
        return true;
    } else if (tree.left != null && tree.left.key > tree.key) {
        return false;
```



```
    } else if (tree.right != null && tree.right.key < tree.key) {
        return false;
    } else {
        return brokenIsBST(tree.left) && brokenIsBST(tree.right);
    }
}
```

(b) Now, write isBST that fixes the error encountered in part (a).

Hint: You will find Integer.MIN_VALUE and Integer.MAX_VALUE helpful. \leftarrow start here
Hint 2: You want to somehow store information about the keys from previous layers, not just the direct parent and children. How do you use the parameters given to do this?
public static boolean isBST(BST T) \{
return isBSTHelper (is B ST Helper (T, Integer. MIN_=VALVEE, Integer. MAX $), V A C U E$
\}

public static boolean isBSTHelper(BST T, int min, int max) \{
if ($\mathrm{I}==$ mil

\rightarrow else if checks validity, else does recursion
\} ~ e l s e ~ i f ~ (T . ~ K e y _ ~ m i n ~ I I ~ T . ~ K e y _ _ m a x ~) \{
return false;
\} else \{

