
CS61B FA23

More Sorting
Exam-Level 13

CS 61B Fall 2023

Announcements

● Week 12 Survey due Monday
11/13

● Project 3A due Monday 11/13

● Lab 12 due Wednesday 11/15

● Project 3B/C due Monday 11/27
(no extensions)

CS 61B Fall 2023

Content Review

CS 61B Fall 2023

Quicksort - More review
3 Way Partitioning or 3 scan partitioning is a simple way of partitioning an array around a pivot. You do
three scans of the list, first putting in all elements less than the pivot, then putting in elements equal to
the pivot, and finally elements that are greater. This technique is NOT in place, but it is stable.

3 1 2 5 4

CS 61B Fall 2023

Quicksort - More review

Hoare Partitioning is an unstable, in place algorithm for partitioning. We use a pair of pointers that start at
the left and right edges of the array, skipping over the pivot.

The left pointer likes items < the pivot, and the right likes items > the pivot. The pointers walk toward each
other until they see something they don’t like, and once both have stopped, they swap items.

Then they continue moving towards each other, and the process completes once they have crossed.
Finally, we swap the pivot with the pointer that originated on the right, and the partitioning is completed.

3 1 2 5 4

Link to Hoare partitioning demo used in lecture

https://docs.google.com/presentation/d/1DOnWS59PJOa-LaBfttPRseIpwLGefZkn450TMSSUiQY/pub?start=false&loop=false&delayms=3000&slide=id.g463de7561_042

CS 61B Fall 2023

Comparison Sorts Summary

Comparison sorts cannot run faster than Θ(NlogN)! What about counting sorts?

Best case Worst case Stable? In Place?

Selection Sort Θ(N2) Θ(N2) no yes

Insertion Sort Θ(N) Θ(N2) yes yes

Heapsort Θ(N) Θ(NlogN) no yes

Mergesort Θ(NlogN) Θ(NlogN) yes no (usually)

Quicksort (w/
Hoare
Partitioning)

Θ(NlogN) Θ(N2) no (usually) yes (logN
space)

CS 61B Fall 2023

Some radix vocabulary
A radix can be thought of as the alphabet or set of digits to choose from in some system. Properly, it is
defined as the base of a numbering system. The radix size of the English alphabet is 26, and the radix
size of Arabic numerals is 10 (0 through 9).

Radix sorts work by using counting sorts to sort the list, one digit at a time. This contrasts with what
we’ve learned with comparison sorts, which compares elements in the list directly.

CS 61B Fall 2023

LSD Radix Sort
LSD sorts numbers by sorting them by digit from lowest digit to largest digit. We’ll see an example of
this on the worksheet.

120
923
112
342
199

General Runtime: Θ(W(N + R)), where:

● W = width of longest key in list
● N = # elements being sorted
● R = radix size

CS 61B Fall 2023

MSD Radix Sort
MSD sorts numbers by sorting them by digit from largest digit to smallest digit. We’ll see an example of
this on the worksheet.

120
923
112
342
199

General Runtime: O(W(N + R))

CS61B FA23

Worksheet

CS 61B More Sorting
Fall 2023 Exam-Level 13: November 13, 2023

1 Sorted Runtimes
We want to sort an array of N unique numbers in ascending order. Determine the best case and worst case

runtimes of the following sorts:

(a) Once the runs in merge sort are of size <= N
100 , we perform insertion sort on them.

Best Case: Θ(), Worst Case: Θ()

(b) We use a linear time median finding algorithm to select the pivot in quicksort.

Best Case: Θ(), Worst Case: Θ()

(c) We implement heapsort with a min-heap instead of a max-heap. You may modify heapsort but must

maintain constant space complexity.

Best Case: Θ(), Worst Case: Θ()

(d) We run an optimal sorting algorithm of our choosing knowing:

� There are at most N inversions.

Best Case: Θ(), Worst Case: Θ()

� There is exactly 1 inversion.

Best Case: Θ(), Worst Case: Θ()

� There are exactly N(N−1)
2 inversions

Best Case: Θ(), Worst Case: Θ()

Mobile User

2 More Sorting

2 MSD Radix Sort
Recursively implement the method msd below, which runs MSD radix sort on a List of Strings and returns

a sorted List of Strings. For simplicity, assume that each string is of the same length. You may not need

all of the lines below.

In lecture, recall that we used counting sort as the subroutine for MSD radix sort, but any stable sort works!

For the subroutine here, you may use the stableSort method, which sorts the given list of strings in place,

comparing two strings by the given index. Finally, you may find following methods of the List class helpful:

1. List<E> subList(int fromIndex, int toIndex). Returns the portion of this list between the specified

fromIndex, inclusive, and toIndex, exclusive.

2. addAll(Collection<? extends E> c). Appends all of the elements in the specified collection to the

end of this list, in the order that they are returned by the specified collection’s iterator.

1 public static List<String> msd(List<String> items) {

2

3 return __;

4 }

5

6 private static List<String> msd(List<String> items, int index) {

7

8 if (___) {

9 return items;

10 }

11 List<String> answer = new ArrayList<>();

12 int start = 0;

13

14 ___;

15 for (int end = 1; end <= items.size(); end += 1) {

16

17 if (___) {

18

19 ___;

20

21 ___;

22

23 ___;

24 }

25 }

26 return answer;

27 }

28 /* Sorts the strings in `items` by their character at the `index` index alphabetically. */

29 private static void stableSort(List<String> items, int index) {

30 // Implementation not shown

31 }

Mobile User

More Sorting 3

3 Shuffled Exams
For this problem, we will be working with Exam and Student objects, both of which have only one attribute:

sid, which is a integer like any student ID.

PrairieLearn thought it was ready for the final. It had meticulously created two arrays, one of Exams and the

other of Students, and ordered both on sid such that the ith Exam in the Exams array has the same sid as the

ith Student in the Students array. Note the arrays are not necessarily sorted by sid. However, PrairieLearn

crashed, and the Students array was shuffled, but the Exams array somehow remained untouched.

Time is precious, so you must design a O(N) time algorithm to reorder the Students array appropriately

without changing the Exams array!

Hint: Begin by reordering both the Students and Exams arrays such that ith Exam in the Exams array has

the same sid as the ith Student in the Students array.

.

Mobile User

	Exam Level Discussion 13 Slides
	examlevel13

