Sorting

Exam Prep 12

Announcements

- Week 12 Survey due Monday 11/06
- Lab 12 due Friday 11/10
- Project 3 released
- Project 3 A due $11 / 13$
- Project $3 \mathrm{~B} \& \mathrm{C}$ due $11 / 27$

Content Review

Insertion Sort

Insertion sort iterates through the list and swaps items backwards as necessary to maintain sortedness.
35124

Runtime: $\mathrm{O}\left(\mathrm{N}^{2}\right)$

Selection Sort

Selection sort finds the smallest remaining element in the unsorted portion of the list at each time step and swaps it into the correct position.

35124

Runtime: $\Theta\left(N^{2}\right)$

Merge Sort

Merge sort splits the list in half, applies merge sort to each half, and then merges the two halves together in a zipper fashion.

35124

Runtime: $\Theta(\mathrm{NlogN})$

Quicksort

Quicksort picks a pivot (ie. first element) and uses Hoare partitioning to divide the list so that everything greater than the pivot is on its right and everything less than the pivot is on its left.

35124

Runtime: Average case $\mathrm{O}(\mathrm{Nlog} \mathrm{N})$, slowest case $\mathrm{O}\left(\mathrm{N}^{2}\right)$ (dependent on pivot selection)

Heap Sort

Heapsort heapifies the array into a max heap and pops the largest element off and appends it to the end until there are no elements left in the heap. You can heapify by sinking nodes in reverse level order.

35124

Runtime: $\mathrm{O}(\mathrm{NlogN})$

Summary for comparison sorts

Stability: a sort is stable if duplicate values remain in the same relative order after sorting as they were initially. In other words, is $2 a$ guaranteed to be before $2 b$ after sorting the list $[2 a, 2 b, 1]$?

	Worst Case	Best Case	Stable?
Selection Sort	$\Theta\left(N^{2}\right)$	$\Theta\left(N^{2}\right)$	No
Insertion Sort	$\Theta\left(N^{2}\right)$	$\Theta(N)$	Yes
Merge Sort	$\Theta($ NlogN $)$	$\Theta($ NlogN $)$	Yes
Quicksort	$\Theta\left(N^{2}\right)$	$\Theta(N l o g N)$	No*
Heapsort	$\Theta(N \log N)$	$\Theta(N)$	No

Try reasoning out or coming up with examples for these best and worst case runtimes!

Worksheet

CS 61B

Fall 2023

Sorting
Exam-Level 12: November 6, 2023

1 Identifying Sorts

Below you will find intermediate steps in performing various sorting algorithms on the same input list. The steps do not necessarily represent consecutive steps in the algorithm (that is, many steps are missing), but they are in the correct sequence. For each of them, select the algorithm it illustrates from among the following choices: insertion sort, selection sort, mergesort, quicksort (first element of sequence as pivot), and heapsort. When we split an odd length array in half in mergesort, assume the larger half is on the right.

Input list: $1429,3291,7683,1337,192,594,4242,9001,4392,129,1000$
(a) $1429,3291,7683,1337,192 \mid 594,4242,9001,4392,129,1000$ 1429, 3291| 192, 1337, 7683| 594, 4242, 9001| 129, 1000, 4392 192, 1337, 1429, 3291, $7683 \mid 129,594,1000,4242,4392,9001$
(b) $1337,192,594,129,1000,1429,3291,7683,4242,9001,4392$ 192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392 $129,192,594,1000,1337,1429,3291,4242,4392,7683,9001$
(c) $1337,1429,3291,7683192,594,4242,9001,4392,129,1000$ 192, 1337, 1429, 3291, 7683 594, 4242, 9001, 4392, 129, 1000 $192,594,1337,1429,3291,7683.4242,9001,4392,129,1000$

```
sorted section grows }
```

(d) $1429,3291,7683,9001,1000,594,4242,1337,4392,129,192$ $7683,4392,4242,3291,1000,594,192,1337,1429,129 \mid 9001$ $129,4392,4242,3291,1000,594,192,1337,1429 \mid 7683,9001$ \uparrow
Heap structure with maximum ele ments at the foont

In all these cases, the final step of the algorithm will be this: $129,192,594,1000,1337,1429,3291,4242,4392,7683,9001$

$$
\begin{aligned}
& \text { Merzesort } \\
& \text { Splits each time }
\end{aligned}
$$

Insertion Sort

Heapsort
Heap sort

Notice the pivots being chosen and hept for future iterations

2 Conceptual Sorts

Answer the following questions regarding various sorting algorithms that we've discussed in class. If the question is T / F and the statement is true, provide an explanation. If the statement is false, provide a counterexample.
(a) We have a system running insertion sort and we find that it's completing faster than expected. What could we conclude about the input to the sorting algorithm?

Nearly sorted-hence why this is often used for database insertion

(b) Give a 5 integer array that elicits the worst case runtime for insertion sort.

Desending order (opposite of a)

$\begin{array}{llll}5 & 4 & 3 & 1\end{array}$
(c) $(\mathrm{T} / \mathrm{F})$ Heapsort is stable.
False -the heppification shuffles thing around, somewhat arbitrarily
(d) Give some reasons as to why someone would use mergesort over quicksort.
worst case runtime is better - Nog N us N^{2}
Stability - marge is, quich isn't
(e) You will be given an answer bank, each item of which may be used multiple times. You may not need to use every answer, and each statement may have more than one answer.
A. QuickSort (in-place using Hoare partitioning and choose the leftmost item as the pivot)
B. MergeSort
C. Selection Sort
D. Insertion Sort
E. HeapSort
N. (None of the above)

List all letters that apply. List them in alphabetical order, or if the answer is none of them, use N indicating none of the above. All answers refer to the entire sorting process, not a single step of the sorting process. For each of the problems below, assume that N indicates the number of elements being sorted.

A, B, C Bounded by $\Omega(N \log N)$ lower bound. Insertion: Sorted takes \boldsymbol{N}

Heapsort: Identical items takes N (no heapification needed)
___ \boldsymbol{B}_{1} E__ Has a worst case runtime that is asymptotically better than Quicksort's worstcase runtime.

Needs $N \log N$ worst case

__W(None)___ Runs in best case $\Theta(\log N)$ time for certain inputs

$$
\stackrel{\downarrow}{\Omega}(N) \text { required to at least check all items }
$$

3 Bears and Beds

In this problem, we will see how we can sort "pairs" of things without sorting out each individual entry. The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help them place their bear customers in the best possible beds to improve their experience. Now, a little known fact about bears is that they are very, very picky about their bed sizes: they do not like their beds too big or too little - they like them just right. Bears are also sensitive creatures who don't like being compared to other bears, but they are perfectly fine with trying out beds.

The Problem:

- Inputs:
- A list of Bears with unique but unknown sizes
- A list of Beds with unique but unknown sizes
- Note: these two lists are not necessarily in the same order
- Output: a list of Bears and a list of Beds such that the ith Bear is the same size as the eth Bed
- Constraints:
- Bears can only be compared to Beds and we can get feedback on if the Bed is too large, too small, or just right.
- Beds can only be compared to Bears and we can get feedback on if the Bear is too large, too small, or just right for it.
hint for quichsort!
- Your algorithm should run in $O(N \log N)$ time on average. mergesort wouldn't work

In order to do the cross companion, use quichsort
 \rightarrow try with other comparison sorts betureen two lists

