
CS 61B Fall 2023

Sorting
Exam Prep 12



CS 61B Fall 2023

Announcements

● Week 12 Survey due Monday 11/06

● Lab 12 due Friday 11/10

● Project 3 released

○ Project 3A due 11/13

○ Project 3B&C due 11/27



CS 61B Fall 2023

Content Review



CS 61B Fall 2023

Insertion Sort
Insertion sort iterates through the list and swaps items backwards as necessary to maintain sortedness. 

3 5 1 2 4

Runtime: O(N2)



CS 61B Fall 2023

Selection Sort
Selection sort finds the smallest remaining element in the unsorted portion of the list at each time step 
and swaps it into the correct position. 

3 5 1 2 4

Runtime: Θ(N2)



CS 61B Fall 2023

Merge Sort
Merge sort splits the list in half, applies merge sort to each half, and then merges the two halves 
together in a zipper fashion.

3 5 1 2 4

Runtime: Θ(NlogN)



CS 61B Fall 2023

Quicksort
Quicksort picks a pivot (ie. first element) and uses Hoare partitioning to divide the list so that everything 
greater than the pivot is on its right and everything less than the pivot is on its left. 

3 5 1 2 4

Runtime: Average case O(NlogN), slowest case O(N2) (dependent on pivot selection)



CS 61B Fall 2023

Heap Sort
Heapsort heapifies the array into a max heap and pops the largest element off and appends it to the end 
until there are no elements left in the heap. You can heapify by sinking nodes in reverse level order.

3 5 1 2 4

Runtime: O(NlogN)



CS 61B Fall 2023

Summary for comparison sorts

Worst Case Best Case Stable?

Selection Sort Θ(N2) Θ(N2) No

Insertion Sort Θ(N2) Θ(N) Yes

Merge Sort Θ(NlogN) Θ(NlogN) Yes

Quicksort Θ(N2) Θ(NlogN) No*

Heapsort Θ(NlogN) Θ(N) No

Stability: a sort is stable if duplicate values remain in the same relative order after sorting as they were 
initially. In other words, is 2a guaranteed to be before 2b after sorting the list [2a, 2b, 1]?

Try reasoning out or coming up with examples for these best and worst case runtimes!

*with hoare partitioning



CS 61B Fall 2023

Worksheet



CS 61B Sorting
Fall 2023 Exam-Level 12: November 6, 2023

1 Identifying Sorts
Below you will find intermediate steps in performing various sorting algorithms on the same input list.

The steps do not necessarily represent consecutive steps in the algorithm (that is, many steps are missing),

but they are in the correct sequence. For each of them, select the algorithm it illustrates from among the

following choices: insertion sort, selection sort, mergesort, quicksort (first element of sequence as pivot), and

heapsort. When we split an odd length array in half in mergesort, assume the larger half is on the right.

Input list: 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

(a) 1429, 3291, 7683, 1337, 192, 594, 4242, 9001, 4392, 129, 1000

1429, 3291, 192, 1337, 7683, 594, 4242, 9001, 129, 1000, 4392

192, 1337, 1429, 3291, 7683, 129, 594, 1000, 4242, 4392, 9001

(b) 1337, 192, 594, 129, 1000, 1429, 3291, 7683, 4242, 9001, 4392

192, 594, 129, 1000, 1337, 1429, 3291, 7683, 4242, 9001, 4392

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

(c) 1337, 1429, 3291, 7683, 192, 594, 4242, 9001, 4392, 129, 1000

192, 1337, 1429, 3291, 7683, 594, 4242, 9001, 4392, 129, 1000

192, 594, 1337, 1429, 3291, 7683, 4242, 9001, 4392, 129, 1000

(d) 1429, 3291, 7683, 9001, 1000, 594, 4242, 1337, 4392, 129, 192

7683, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 129, 9001

129, 4392, 4242, 3291, 1000, 594, 192, 1337, 1429, 7683, 9001

In all these cases, the final step of the algorithm will be this:

129, 192, 594, 1000, 1337, 1429, 3291, 4242, 4392, 7683, 9001

Mobile User



2 Sorting

2 Conceptual Sorts
Answer the following questions regarding various sorting algorithms that we’ve discussed in class. If the

question is T/F and the statement is true, provide an explanation. If the statement is false, provide a

counterexample.

(a) We have a system running insertion sort and we find that it’s completing faster than expected. What

could we conclude about the input to the sorting algorithm?

(b) Give a 5 integer array that elicits the worst case runtime for insertion sort.

(c) (T/F) Heapsort is stable.

(d) Give some reasons as to why someone would use mergesort over quicksort.

Mobile User



Sorting 3

(e) You will be given an answer bank, each item of which may be used multiple times. You may not need

to use every answer, and each statement may have more than one answer.

A. QuickSort (in-place using Hoare partitioning and choose the leftmost item as the pivot)

B. MergeSort

C. Selection Sort

D. Insertion Sort

E. HeapSort

N. (None of the above)

List all letters that apply. List them in alphabetical order, or if the answer is none of them, use N

indicating none of the above. All answers refer to the entire sorting process, not a single step of the

sorting process. For each of the problems below, assume that N indicates the number of elements being

sorted.

_______________ Bounded by Ω(N logN)lower bound.

_______________ Has a worst case runtime that is asymptotically better than Quicksort’s worstcase

runtime.

_______________ Never compares the same two elements twice.

_______________ Runs in best case Θ(logN)time for certain inputs

Mobile User



4 Sorting

3 Bears and Beds
In this problem, we will see how we can sort “pairs” of things without sorting out each individual entry.

The hot new Cal startup AirBearsnBeds has hired you to create an algorithm to help them place their bear

customers in the best possible beds to improve their experience. Now, a little known fact about bears is that

they are very, very picky about their bed sizes: they do not like their beds too big or too little - they like

them just right. Bears are also sensitive creatures who don’t like being compared to other bears, but they

are perfectly fine with trying out beds.

The Problem:

� Inputs:

– A list of Bears with unique but unknown sizes

– A list of Beds with unique but unknown sizes

– Note: these two lists are not necessarily in the same order

� Output: a list of Bears and a list of Beds such that the ith Bear is the same size as the ith Bed

� Constraints:

– Bears can only be compared to Beds and we can get feedback on if the Bed is too large, too small,

or just right.

– Beds can only be compared to Bears and we can get feedback on if the Bear is too large, too

small, or just right for it.

– Your algorithm should run in O(N logN) time on average.

Mobile User


	Exam-Level Discussion 12 Slides
	examlevel12

