
CS61B FA23

Graphs II, Tries
Exam Prep 11



CS 61B Spring 2023

Announcements
● Week 10 Survey due Monday, Oct 30

● Proj 2b due Monday, Oct 30 (Tonight!!)

● Lab 11 (BYOW Intro) due Friday, Nov 3

● Tutor Review Session this Friday, Nov 3



CS61B FA23

Content Review



CS61B FA23

Topological Sort
Topological Sort is a way of transforming a directed acyclic graph into a linear ordering of vertices, where 
for every directed edge u v, vertex u comes before v in the ordering. 

5

4

0

2

1

3 5 4 2 3 1 0



CS61B FA23

Topological Sort
Key Ideas:

- Not having a topological sort indicates a that the graph has directed cycle (only works on DAGs)
- Most DAGs have multiple topological sorts
- Source node: a node that has no incoming edges
- Sink node: a node that has no outgoing edges

5

4

0

2

1

3 5 4 2 3 10



CS61B FA23

Graph Algorithm Runtimes
For a graph with V vertices and E edges:

Graph Algorithm Runtime

DFS O (V + E)

BFS O (V + E)

Dijkstra's O((V + E) log V)

A* O((V + E) log V)

Prim’s O((V + E) log V)

Kruskal’s O(E log E)



CS61B FA23

Tries
Tries are special trees mostly used for language tasks.

Each node in a trie is marked as being a word-end (a “key”) or not, so you can quickly check whether a 
word exists within your structure.

C

A

T

C

H

D

O

G

I

G



CS61B FA23

Trie Operations

Longest prefix of: follow the trie until the letters no longer match, keeping track of the most recent “end”

C

A

T

C

H

D

O

G

I

G

longestPrefixOf(“catchall”) → 
“catch”



CS61B FA23

Trie Operations

Keys with prefix: follow until the end of the prefix, then traverse all words below that node.

C

A

T

C

H

D

O

G

I

G

keysWithPrefix(“ca”) → “catch”, 
“cat”



CS61B FA23

Worksheet



CS 61B Graphs II, Tries
Fall 2023 Exam-Level 11: October 30, 2023

1 Multiple MSTs
Recall a graph can have multiple MSTs if there are multiple spanning trees of minimum weight.

(a) For each subpart below, select the correct option and justify your answer. If you select “never” or

“always,” provide a short explanation. If you select “sometimes”, provide two graphs that fulfill the

given properties — one with multiple MSTs and one without. Assume G is an undirected, connected

graph with at least 3 vertices.

1. If some of the edge weights are identical, there will

⃝ never be multiple MSTs in G.

⃝ sometimes be multiple MSTs in G.

⃝ always be multiple MSTs in G.

Justification:

2. If all of the edge weights are identical, there will

⃝ never be multiple MSTs in G.

⃝ sometimes be multiple MSTs in G.

⃝ always be multiple MSTs in G.

Justification:

(b) Suppose we have a connected, undirected graph G with N vertices and N edges, where all the edge

weights are identical. Find the maximum and minimum number of MSTs in G and explain your

reasoning.

Minimum: _________

Maximum: _________

Justification:

Mobile User



2 Graphs II, Tries

(c) It is possible that Prim’s and Kruskal’s find different MSTs on the same graph G (as an added exercise,

construct a graph where this is the case!). Given any graph G with integer edge weights, modify the

edge weights of G to ensure that (1) Prim’s and Kruskal’s will output the same results, and (2) the

output edges still form a MST correctly in the original graph. You may not modify Prim’s or Kruskal’s,

and you may not add or remove any nodes/edges.

Hint: Look at subpart 1 of part a.

2 Topological Sorting for Cats
The big brain cat, Duncan, is currently studying topological sorts! However, he has a variety of curiosities

that he wishes to satisfy.

(a) Describe at a high level in plain English how to perform a topological sort using an algorithm we already

know (hint: it involves DFS), and provide the time complexity.

(b) Duncan came up with another way to possibly do topological sorts, and he wants you to check him on

its correctness and tell him if it is more efficient than our current way! Let’s derive the algorithm.

1. First, provide a logical reasoning for the following claim (or a proof!): Every DAG has at least one

source node, and at least one sink node.

2. Next, describe an algorithm (in English or in pseudocode) for finding all of the source nodes in a

graph.

3. Now, make the following observation: If we remove all of the source nodes from a DAG, we are

guaranteed to have at least one new source node. Inspired by this fact, and using the previous

parts, come up with an algorithm to topological sort. Describe it in words or using pseudocode.

Is it more efficient than what we already have? Hint: If it’s easier for you, first consider one with

quadratic runtime, then think about how you might save some computations to make it faster.

Mobile User



Graphs II, Tries 3

3 A Wordsearch
Given an N by N wordsearch and N words, devise an algorithm (using pseudocode or describe it in plain

English) to solve the wordsearch in O(N3). For simplicity, assume no word is contained within another, i.e.

if the word ”bear” is given, ”be” wouldn’t also be given.

If you are unfamiliar with wordsearches or want to gain some wordsearch solving intuition, see below for an

example wordsearch. Note that the below wordsearch doesn’t follow the precise specification of an N by N

wordsearch with N words, but your algorithm should work on this wordsearch regardless.

Example Wordsearch:

Hint: Add the words to a Trie, and you may find the longestPrefixOf operation helpful. Recall that

longestPrefixOf accepts a String key and returns the longest prefix of key that exists in the Trie, or null

if no prefix exists.

https://algs4.cs.princeton.edu/52trie/TrieST.java.html
Mobile User


	Exam-Level Discussion 11 Slides
	examlevel11

